Add like
Add dislike
Add to saved papers

Steady state engineering of a two-level system by the mixed-state inverse engineering scheme.

Scientific Reports 2024 Februrary 11
The mixed-state inverse engineering scheme is a control scheme used for engineering the quantum state of a driven open quantum system from an initial steady state to a final steady state. In this paper, we present an analytical study of this scheme applied to the driven two-level model coupled to a heat reservoir. Typically, when the purity of the quantum state varies, incoherent control techniques are required for mixed-state engineering. However, we show that for both Markovian and non-Markovian dynamics, coherent control protocols can transfer the quantum state into the target state. This simplification comes at a cost, as the evolution of the quantum state must be limited to restricted conditions, resulting in special trajectories in its Hilbert space that connect the initial and target states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app