Add like
Add dislike
Add to saved papers

High-Throughput Analysis of Leaf Chlorophyll Content in Aquaponically Grown Lettuce Using Hyperspectral Reflectance and RGB Images.

Chlorophyll content reflects plants' photosynthetic capacity, growth stage, and nitrogen status and is, therefore, of significant importance in precision agriculture. This study aims to develop a spectral and color vegetation indices-based model to estimate the chlorophyll content in aquaponically grown lettuce. A completely open-source automated machine learning (AutoML) framework (EvalML) was employed to develop the prediction models. The performance of AutoML along with four other standard machine learning models (back-propagation neural network (BPNN), partial least squares regression (PLSR), random forest (RF), and support vector machine (SVM) was compared. The most sensitive spectral (SVIs) and color vegetation indices (CVIs) for chlorophyll content were extracted and evaluated as reliable estimators of chlorophyll content. Using an ASD FieldSpec 4 Hi-Res spectroradiometer and a portable red, green, and blue (RGB) camera, 3600 hyperspectral reflectance measurements and 800 RGB images were acquired from lettuce grown across a gradient of nutrient levels. Ground measurements of leaf chlorophyll were acquired using an SPAD-502 m calibrated via laboratory chemical analyses. The results revealed a strong relationship between chlorophyll content and SPAD-502 readings, with an R2 of 0.95 and a correlation coefficient (r) of 0.975. The developed AutoML models outperformed all traditional models, yielding the highest values of the coefficient of determination in prediction (Rp2) for all vegetation indices (VIs). The combination of SVIs and CVIs achieved the best prediction accuracy with the highest Rp2 values ranging from 0.89 to 0.98, respectively. This study demonstrated the feasibility of spectral and color vegetation indices as estimators of chlorophyll content. Furthermore, the developed AutoML models can be integrated into embedded devices to control nutrient cycles in aquaponics systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app