Add like
Add dislike
Add to saved papers

Overexpression of CuZn superoxide dismutase improves high-density lipoprotein function in swine.

Cardiovascular disease (CVD) has been the leading cause of death worldwide. As a chronic inflammatory disease, atherosclerosis (AS) acts as the initiating factor for CVD and reactive oxygen species (ROS) play a vital role in its development. Superoxide dismutases (SOD) can alleviate the detrimental effects of ROS and serve as the first line of defense through detoxifying the products derived from oxidative stress in vivo. Considering the potential preventive effects of high-density lipoprotein (HDL) on AS and the close relationship between CuZn superoxide dismutase (CuZnSOD) and HDL, the present work investigated whether CuZnSOD overexpression in swine could improve the function of HDL. Seven CuZnSOD transgenic swine, constructed by sperm and magnetic nanoparticles, demonstrated overexpressed CuZnSOD in the liver (P<0.01) but comparable level to control in plasma (P>0.05). CuZnSOD overexpression significantly down-regulated the levels of triglyceride (TG), apolipoprotein A-I (apoA-I) (P<0.05), and high-density lipoprotein cholesterol (HDL-C) (P<0.01) in plasma. In the presence of CuZnSOD overexpression, HDL3 significantly inhibited levels of IL-6 and TNF-α induced by oxidized low-density lipoprotein (oxLDL) (P<0.05), indicating enhanced anti-inflammatory activity of HDL. At the same time, HDL-mediated cholesterol efflux did not decrease (P>0.05). CuZnSOD overexpression improves the anti-inflammatory function of HDL despite decreased levels of HDL-C. In Conclusion, CuZnSOD overexpression improves HDL function in swine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app