Add like
Add dislike
Add to saved papers

Inhibitory effect of marine Bacillus sp. and its biomineralization on the corrosion of X65 steel in offshore oilfield produced water.

Bioelectrochemistry 2024 January 31
The issue of material failure attributed to microbiologically influenced corrosion (MIC) is escalating in seriousness. Microorganisms not only facilitate corrosion but certain beneficial microorganisms also impede its occurrence. This study explored the impact of marine B. velezensis on the corrosion behavior of X65 steel in simulated offshore oilfield produced water. B. velezensis exhibited rapid growth in the initial stages, and the organic acid metabolites were found to promote corrosion. Subsequently, there was an increase in cross-linked "networked" biofilms products, a significant rise in the prismatic shape of corrosion products, and a tendency for continuous development in the middle and late stages. The organic/inorganic mineralized film layer formed on the surface remained consistently complete. Metabolic products of amino acid corrosion inhibitors were also observed to be adsorbed into the film. B. velezensis altered the kinetics of the X65 steel cathodic reaction, resulting in a deceleration of the electrochemical reaction rate. The mineralization induced by B. velezensis effectively slowed down the corrosion rate of X65 steel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app