Add like
Add dislike
Add to saved papers

Comprehensive evaluation of magnetic resonance imaging sequences for signal intensity based assessment of anterior cruciate ligament healing following surgical treatment.

Normalized signal intensity (SI) obtained from magnetic resonance imaging (MRI) has been used to track anterior cruciate ligament (ACL) postoperative remodeling. We aimed to assess the effect of MRI sequence (PD: proton density-weighted; T2: T2-weighted; CISS: constructive interference in steady state) on postoperative changes in healing ACLs/grafts. We hypothesized that CISS is better at detecting longitudinal SI and texture changes of the healing ACL/graft compared to the common clinical sequences (PD and T2). MR images of patients who underwent ACL surgery were evaluated and separated into groups based on surgical procedure (Bridge-Enhanced ACL Repair (BEAR; n = 50) versus ACL reconstruction (ACLR; n = 24)). CISS images showed decreasing SI across all timepoints in both the BEAR and ACLR groups (p < 0.01), PD and T2 images showed decreasing SI in the 6-to-12- and 12-to-24-month postoperative timeframes in the BEAR group (p < 0.02), and PD images additionally showed decreasing SI between 6- and 24-months postoperation in the ACLR group (p = 0.02). CISS images showed texture changes in both the BEAR and ACLR groups, showing increases in energy and decreases in entropy in the 6-to-12- and 6-to-24-month postoperative timeframes in the BEAR group (p  < $\lt $  0.04), and increases in energy, decreases in entropy, and increases in homogeneity between 6 and 24 months postoperation in the ACLR group (p < 0.04). PD images showed increases in energy and decreases in entropy between 6- and 24-months postoperation in the ACLR group (p < 0.008). Finally, CISS was estimated to require a smaller sample size than PD and T2 to detect SI differences related to postoperative remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app