Add like
Add dislike
Add to saved papers

The role of nitroaromatic compounds (NACs) in constraining BrC absorption in the indo-Gangetic Plain (IGP).

We present here the first measurements of nitroaromatic compounds (NACs) including nitrophenols (NPs), nitrocatechols (NCs) and nitrosalicylic acids (NSAs) from the Indian subcontinent and their role in constraining brown carbon (BrC) absorption. NACs at a rural receptor site in the eastern Indo-Gangetic Plain (IGP) (annual average: 185 ± 94 ng m-3 ) was dominated by NSAs (135 ± 77 ng m-3 ), followed by NPs (29 ± 11 ng m-3 ) and NCs (17 ± 16 ng m-3 ), with notable enrichments during nighttime and during the biomass burning seasons. An equilibrium absorption partitioning model estimated that >90 % of NSAs and NCs were in the particle-phase, suggesting lower degradation rates via oxidation and photolysis potentially due to year-round high relative humidity. While the contribution of NACs to organic aerosol mass was only 0.42 ± 0.23 %, their contribution to BrC absorption in the 300-450 nm range was higher by an order of magnitude (8 ± 4 %), with NCs and NSAs contributing almost equally in the low-visible (400-450 nm) range as at 365 nm. Despite having mass concentrations lower than NPs by factors of ~2, contribution of NCs to BrC absorption at λ ≥ 400 nm was comparable to that by NPs, indicating the importance of the absorption efficiency of chromophores. The receptor model positive matrix factorization (PMF) quantified three major NAC sources: fossil fuel combustion (49 ± 15 %; annual average), secondary formation (40 ± 12 %), and biomass burning (11 ± 9 %), with variable contributions on seasonal and day-night bases. In summary, the study uncovered the significant role of NACs in constraining BrC absorption in the IGP, which stresses the importance for molecular-level characterization of BrC chromophores.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app