Add like
Add dislike
Add to saved papers

High temperature-size exclusion chromatography with triple detection to assess the molecular architecture of low-density polyethylene: Insight into branching and processability correlations.

In this study, three commercially available low-density polyethylene (LDPE) polymers produced via a tubular reactor process, with varying melt flow rates at 190°C/2.16 kg (4.0, 1.9, and 0.75 g/10 min), have been selected and subjected to high temperature-size exclusion chromatography (SEC) analysis coupled with an infrared-5 (IR-5), viscometer (VISCO), and multiangle laser light-scattering detectors. The molecular weight (MW), MW distribution, short-chain branching (SCB), and long-chain branching parameters were investigated. It was found that MW obtained by the universal technique (∼1.57-1.7 times) and multiangle laser light-scattering detection technique is (∼1.43-1.55 times) higher than that of the conventional calibration technique, which could be attributed to structural complexity associated with LDPEs which is not clearly understood by conventional SEC mode alone. The bulk SCB per 1000 total carbon atoms estimated by IR-5 detection was found to range from 16.50 to 17.80. On the other hand, long chain branching frequency per 1000 total carbon atoms obtained by online VISCO and multiangle laser light-scattering detection ranged from 0.46 to 0.54 and 0.65 to 0.94, respectively. Further, the significance of long chain branching parameters on the polymer processing behavior was studied in correlation with rheological property (Die swell ratio).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app