Add like
Add dislike
Add to saved papers

The role of decellularized cell derived extracellular matrix in the establishment and culture of in vitro breast cancer tumor model.

Biomedical Materials 2024 January 30
Decades of research have shown that 2D cell culture studies are insufficient for preclinical cancer diagnosis and treatment, and that cancer cells in 3D culture systems have better cell-cell and cell-matrix interactions, gene expression, heterogeneity, and structural complexity that more closely resemble in vivo tumors. Researchers are still optimizing 3D culturing settings for different cancers. Despite promising tumor spheroid research, tumor cell-only aggregates lack the tumor microenvironment and cannot model tumors. Here, MCF-7 breast cancer cell derived decellularized extracellular matrix (CD-dECMs) were obtained and converted into autologous, biologically active, biocompatible, and non-immunogenic hydrogels to be used as micro-environment in both organoid formation and culture. For the production of organoids, CD-dECM doping concentrations ranging from 0.1 mg/mL to 1.5 mg/mL were evaluated, and the lowest concentration was found to be the most effective. For organoid culture, 8 mg/mL CD-dECM, 4 mg/mL rat tendon collagen type I (Col I) (4 mg/mL) and a 1:1 (v/v) mixture of these two were used and the most viable and the biggest organoids were discovered in CD-dECM/Col I (1:1) group. The results show that autologous CD-dECM can replace hydrogels in tumor organoid generation and culture at low and high concentrations, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app