Add like
Add dislike
Add to saved papers

Development and multi-site external validation of a generalizable risk prediction model for bipolar disorder.

Translational Psychiatry 2024 January 26
Bipolar disorder is a leading contributor to disability, premature mortality, and suicide. Early identification of risk for bipolar disorder using generalizable predictive models trained on diverse cohorts around the United States could improve targeted assessment of high risk individuals, reduce misdiagnosis, and improve the allocation of limited mental health resources. This observational case-control study intended to develop and validate generalizable predictive models of bipolar disorder as part of the multisite, multinational PsycheMERGE Network across diverse and large biobanks with linked electronic health records (EHRs) from three academic medical centers: in the Northeast (Massachusetts General Brigham), the Mid-Atlantic (Geisinger) and the Mid-South (Vanderbilt University Medical Center). Predictive models were developed and valid with multiple algorithms at each study site: random forests, gradient boosting machines, penalized regression, including stacked ensemble learning algorithms combining them. Predictors were limited to widely available EHR-based features agnostic to a common data model including demographics, diagnostic codes, and medications. The main study outcome was bipolar disorder diagnosis as defined by the International Cohort Collection for Bipolar Disorder, 2015. In total, the study included records for 3,529,569 patients including 12,533 cases (0.3%) of bipolar disorder. After internal and external validation, algorithms demonstrated optimal performance in their respective development sites. The stacked ensemble achieved the best combination of overall discrimination (AUC = 0.82-0.87) and calibration performance with positive predictive values above 5% in the highest risk quantiles at all three study sites. In conclusion, generalizable predictive models of risk for bipolar disorder can be feasibly developed across diverse sites to enable precision medicine. Comparison of a range of machine learning methods indicated that an ensemble approach provides the best performance overall but required local retraining. These models will be disseminated via the PsycheMERGE Network website.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app