Add like
Add dislike
Add to saved papers

Effect of beta glucan coating on controlled release, bioaccessibility, and absorption of β-carotene from loaded liposomes.

Food & Function 2024 January 23
Recently, the use of biopolymers as coating material to stabilise phospholipid-based nanocarriers has increased. One such class of biopolymers is the dietary fibre beta-glucan (βG). In this study, we developed and characterized beta-carotene (βC) loaded βG coated nanoliposomes (GNLs) to investigate the effect of βG coating on the stability, controlled release, bioaccessibility, diffusion and subsequent absorption of the lipophilic active agent. The size, charge ( Z -potential), and FTIR spectra were measured to determine the physicochemical stability of GNLs. βG coating reduced the bioaccessibility, provided prolonged release and improved the antioxidant activity of the nanoliposomes. Multiple particle tracking (MPT) data suggested that βC-GNLs were less diffusive in porcine intestinal mucus (PIM). Additionally, the microviscosity of the PIM treated with GNLs was observed to be higher (0.04744 ± 0.00865 Pa s) than the PIM incubated with uncoated NLs (0.015 ± 0.0004 Pa s). An Ex vivo experiment was performed on mouse jejunum to measure the absorption of beta-carotene from coated (βC-GNLs) and uncoated nanoliposomes (βC-NLs). Data showed that after 2 hours, 27.7 ± 1.3 ng mL-1 of βC encapsulated in GNLs and 61.54 ± 3 ng mL-1 of the βC encapsulated in uncoated NLs was absorbed by mouse intestinal mucosa. These results highlight that coating with βG stabilise NLs during gastrointestinal digestion and provides more sustained release of βC from nanoliposomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app