Add like
Add dislike
Add to saved papers

Icariin ameliorates osteoporosis by activating autophagy in ovariectomized rats.

BACKGROUND: Osteoporosis (OP) is a major problem that increases the mortality and disability rate worldwide. With an increase in the aging population, OP has become a major public threat to human health. Searching for effective and suitable targets for drug treatment in OP has become an urgent need.

OBJECTIVES: Osteoporosis is a metabolic bone disease characterized by reduced bone mass and density as well as micro-architectural deterioration. Icariin is a flavonoid extracted from plants of the genus Epimedium and has been shown to exert potential anti-OP activity. The present study was designed to observe the effect of icariin on OP and to clarify the underlying mechanisms in ovariectomized (OVX) rats.

MATERIAL AND METHODS: Hematoxylin and eosin (H&E) staining, von Kossa staining and micro-computed tomography (micro-CT) confirmed significant bone loss in the OVX group. Protein expression level was detected with western blot analysis.

RESULTS: Icariin reversed a trend of increased bone turnover by reducing serum alkaline phosphatase (ALP), procollagen type I N-terminal propeptide (PINP), tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), and C-telopeptide of type I collagen (CTX-I). Furthermore, icariin decreased sequestosome 1 (p62) and increased microtubule-associated protein 1 light chain 3II/microtubule-associated protein 1 light chain 3I (LC3II/LC3I), autophagy-related protein 7 (Atg7), and Beclin 1 in the femur of OVX rats, improving the indicators of impaired autophagy in OP.

CONCLUSIONS: Icariin reversed the significant upregulation of the serine/threonine protein kinase (Akt), mammalian target of rapamycin (mTOR) and unc-51-like autophagy activating kinase 1 (ULK1) at Ser757, and the downregulation of p-AMP-activated protein kinase (p-AMPK) and ULK1 phosphorylated at Ser555 in the OVX rats, suggesting that the mechanism of icariin action in OP treatment involves the activation and suppression of the AMPK/ULK1 and AKT/mTOR/ULK1 autophagy pathways, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app