Add like
Add dislike
Add to saved papers

Comparing the Performance of Three Computational Methods for Estimating the Effective Reproduction Number.

The effective reproduction number (Rt) is one of the most important epidemiological parameters, providing suggestions for monitoring the development trend of diseases and also for adjusting the prevention and control policies. However, a few studies have focused on the performance of some common computational methods for Rt . The purpose of this article is to compare the performance of three computational methods for Rt : the time-dependent (TD) method, the new time-varying (NT) method, and the sequential Bayesian (SB) method. Four evaluation methods-accuracy, correlation coefficient, similarity based on trend, and dynamic time warping distance-were used to compare the effectiveness of three computational methods for Rt under different time lags and time windows. The results showed that the NT method was a better choice for real-time monitoring and analysis of the epidemic in the middle and late stages of the infectious disease. The TD method could reflect the change of the number of cases stably and accurately, and was more suitable for monitoring the change of Rt during the whole process of the epidemic outbreak. When the data were relatively stable, the SB method could also provide a reliable estimate for Rt , while the error would increase when the fluctuation in the number of cases increased. The results would provide suggestions for selecting appropriate Rt estimation methods and making policy adjustments more timely and effectively according to the change of Rt .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app