Add like
Add dislike
Add to saved papers

Assessment of Biotransformed Silica Nanoparticle on Blood Glucose Level in Human: An In Vitro Investigation.

Diabetes has affected nearly half a billion people worldwide. According to current guidelines, glycemic control is essential to mitigate diabetic complications. The antihyperglycemic effects of various chemically synthesized nanoparticles have been reported in animal models. However, their impact on humans has not been previously reported. This study was conducted to biosynthesize and assess the antihyperglycemic property of silica nanoparticles (SiO2 -NPs) since they are non-toxic and biocompatible. SiO2 -NPs biosynthesized using the endophytic fungus Fusarium oxysporum . In this collaborative study, 26 people, either hyperglycemic or euglycemic, diagnosed at the Endocrinology Outpatients, according to the American Diabetes Association, USA, were recruited. Silica nanoparticles were characterized and assessed for in vitro antihyperglycemic property using blood samples. Particle size distribution based on TEM images confirms that the average size of silica nanoparticle is 25 nm and is monodispersed in nature. The XRD pattern shows that only one broad peak at 2θ = 220 corresponds to the plane (101) of silica nanoparticles. UV Visible spectra show the λmax at 270 nm, peaks in FTIR at 1536 cm-1 , 1640 cm-1 , and 3420 cm-1 for the protein cap. The mean blood glucose was 120.2 mg/dL in the 'SiO2 -NP untreated' group and decreased to 97.24 mg/dL in the 'SiO2 -NP treated' group. A paired t-test (P-value < 0.0001) indicates a strong relationship between antihyperglycemia and silica NP. In our study, it has been observed that the biosynthesized silica nanoparticles using the endophytic fungus Fusarium oxysporum show antihyperglycemic property in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app