Add like
Add dislike
Add to saved papers

Nanometal surface energy transfer (NSET) from biologically active heterocyclic ligands to silver nanoparticles induces enhanced antimicrobial activity against gram-positive bacteria.

Herein we report the formation of a nanometal surface energy transfer (NSET) pair between a donor biologically active heterocyclic luminescent ligand such as 3-(1,3-Dioxoisoindolin-2-yl)-N, N-dimethylpropan-1-ammonium perchlorate (S4 PNL; λem -408 nm) and an acceptor silver nanoparticle (Ag NP; λabs -406 nm). When the S4 PNL ligand interacts with Ag NPs, the quenching in their luminescence intensity at 408 nm is noticed, with a Stern-Volmer constant of 0.8 × 104 M-1 . The present donor-acceptor pair displays a binding constant of 2.8 × 104 M-1 and binding sites of 1.12. The current work shows the energy transfer from a molecular dipole (S4 PNL) to a nanometal surface (Ag NP) and thus follows the nanometal surface energy transfer (NSET) ruler with an energy transfer efficiency of 80.0%, 50% energy transfer efficiency distance (d0 ) of 4.9 nm, donor-acceptor distance of 3.4 nm. The alteration in the zeta potential value of S4 PNL upon interaction with AgNP clearly demonstrates the strong electrostatic interaction between donor and acceptor. Importantly, the current NSET pair shows enhanced antimicrobial activity against gram-positive bacteria such as Bacillus cereus (B. cereus) in comparison to their parent components i.e. S4 PNL ligand and Ag NP. The NSET pair shows maximum inhibition against B. cereus (9202.21 ± 463.26 CFU/ml.) at 10% while minimum inhibition is observed at 0.01% of it (39,887.19 ± 242.67 CFU/ml.).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app