Add like
Add dislike
Add to saved papers

Spider venom neurotoxin based bioinsecticides: A novel bioactive for the control of the Asian citrus psyllid Diaphorina citri (Hemiptera).

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a key vector of the phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas) associated with huanglongbing (HLB), the most serious and currently incurable disease of citrus worldwide. Here we report the first investigation into the potential use of a spider venom-derived recombinant neurotoxin, ω/κ-HxTx-Hv1h (hereafter HxTx-Hv1h) when delivered alone or when fused to snowdrop lectin (Galanthus nivalis agglutinin; GNA) to control D. citri. Proteins, including GNA alone, were purified from fermented transformed yeast Pichia pastoris cultures. Recombinant HxTx-Hv1h, HxTx-Hv1h/GNA and GNA were all orally toxic to D. citri, with Day 5 median lethal concentrations (LC50 ) derived from dose-response artificial diet assays of 27, 20 and 52 μM, respectively. Western analysis of whole insect protein extracts confirmed that psyllid mortality was attributable to protein ingestion and that the fusion protein was stable to cleavage by D. citri proteases. When applied topically (either via droplet or spray) HxTx-Hv1h/GNA was the most effective of the proteins causing >70 % mortality 5 days post treatment, some 2 to 3-fold higher levels of mortality as compared to the toxin alone. By contrast, no significant mortality or phenotypic effects were observed for bumble bees (Bombus terrestris L.) fed on the recombinant proteins in acute toxicity assays. This suggests that HxTx-Hv1h/GNA has potential as a novel bioinsecticide for the management of D. citri offering both enhanced target specificity as compared to chemical pesticides and compatibility with integrated pest management (IPM) strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app