Journal Article
Review
Add like
Add dislike
Add to saved papers

Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: Comparison to known cardiotoxins.

Though microdosing psychedelics has become increasingly popular, its long-term effects on cardiac health remain unknown. Microdosing most commonly involves ingesting sub-threshold doses of lysergic acid diethylamide (LSD), psilocybin, or other psychedelic drugs 2-4 times a week for at least several weeks, but potentially months or years. Concerningly, both LSD and psilocybin share structural similarities with medications which raise the risk of cardiac fibrosis and valvulopathy when taken regularly, including methysergide, pergolide, and fenfluramine. 3,4-Methylenedioxymethamphetamine, which is also reportedly used for microdosing, is likewise associated with heart valve damage when taken chronically. In this review, we evaluate the evidence that microdosing LSD, psilocybin, and other psychedelics for several months or more could raise the risk of cardiac fibrosis. We discuss the relationship between drug-induced cardiac fibrosis and the 5-HT2B receptor, and we make recommendations for evaluating the safety of microdosing psychedelics in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app