Add like
Add dislike
Add to saved papers

Transcriptome Analysis of Granulosa Cells Reveals Regulatory Mechanisms Related to Chicken Follicle Development.

In this study, we aimed to better understand the difference between the functions of the two types of granulosa cells and sought to discover more key genes involved in follicle development and follicle selection. Herein, we separately collected pre-hierarchical follicle granulosa cells (PHGCs) and preovulatory follicle granulosa cells (POGCs) for RNA extraction; the transcriptomes of the two groups were compared via RNA-seq. A total of 5273 differentially expressed genes (DEGs) were identified between the PHGCs and POGCs; 2797 genes were up-regulated and 2476 were down-regulated in the PHGCs compared with the POGCs. A qPCR analysis confirmed that the expression patterns of 16 randomly selected DEGs were highly consistent with the RNA-seq results. In the POGCs, many of the genes with the most significant increase in expression were related to steroid hormone synthesis. In addition, the genes with the most significant decline in expression, including AMH and WT1 , were related to the inhibition of steroid hormone synthesis. These results suggest that steroid hormones play a key role in follicle development. Furthermore, a Gene Ontology (GO) analysis revealed that these DEGs were mainly involved in the primary metabolic process, the carbohydrate metabolic process, the cellular process, ribosomes, the cytoplasm, and intracellular processes. A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly enriched in steroid biosynthesis, the cell cycle, ribosomes, the TGF-beta signaling pathway, focal adhesion, and so on. We also observed the morphology of the follicles at different developmental stages, and the results showed that the thickness of the granular layer of the small yellow follicles (SYFs) decreased significantly with further development. In addition, we also found that the thickness of the granulosa layer of hens over 300 days old was significantly lower than that of 200-day-old hens. In short, these data indicate that the tissue morphology and function of granulosa cells change throughout follicle development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app