Add like
Add dislike
Add to saved papers

Adhesive polydopamine-based photothermal hybrid hydrogel for on-demand lidocaine delivery, effective anti-bacteria, and prolonged local long-lasting analgesia.

Considering the astonishing prevalence of localized pain affecting billions of patients worldwide, the development of advanced analgesic formulations or delivery systems to achieve clinical applicability is of great significance. In this study, an integrated PDA-based LiH@PDA@Ag@PAA@Gelatin system was designed for sustained delivery of lidocaine hydrochloride (LiH). By optimizing the preparation process and formulation of the hydrogel, the hydrogel exhibited superior mechanical properties, reversibility, adhesion strength, and self-healing attributes. Moreover, PDA@Ag nanoparticles were evenly dispersed within the hydrogel, and the optimized PDA@Ag@PAA@Gelatin showed a higher photothermal conversion efficiency than that of pure PDA. Importantly, LiH@PDA@Ag@PAA@Gelatin could effectively capture and eradicate bacteria through the synergistic interaction between near-infrared (NIR), PDA, Ag and LiH. In vitro and in vivo tests demonstrated that LiH@PDA@Ag@PAA@Gelatin exhibited higher drug delivery efficiency compared to commercial lidocaine patches. By evaluating the mechanical pain withdrawal threshold of the spared nerve injury (SNI) model in rats, it was proven that LiH@PDA@Ag@PAA@Gelatin enhanced and prolonged the analgesic effect of LiH. Furthermore, LiH@PDA@Ag@PAA@Gelatin induced by NIR possessed excellent on-demand photothermal analgesic ability. Therefore, this study develops a convenient method for preparing localized analgesic hydrogel patches, providing an important step towards advancing PDA-based on-demand pain relief applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app