Add like
Add dislike
Add to saved papers

Population-based high-dimensional analyses identify multiple intrinsic characters for cancer vaccines against lung squamous cell carcinoma.

Medical Oncology 2024 January 4
In lung squamous cell carcinoma (LUSC), current cancer vaccines show promising effects, despite a lack of benefit for a large number of patients. We first identified the tumor antigens into shared and private antigens, and determined the population by clustering analysis in public datasets. For vaccine development, The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were collected. WGCNA method was furthermore applied to construct a consensus gene co-expression network based on TCGA and CPTAC datasets. The main analyses in bulk sequencing included survival, clinical features, tumor microenvironment (TME), and pathways enrichment. In addition, single-cell RNA (scRNA) analysis of cancer epithelium dissected consensus subtype. We identified the ideal population for cancer vaccines, and candidate neoantigens including AOC1, COL5A2, LGI2, and POSTN. According to subtype analysis, Lung squamous 1 (LSQ1) type exhibited a higher tumor mutational load (TMB) and copy number but no immune infiltration, whereas lung squamous 2 (LSQ2) tumors had a higher global methylation level and more fibroblasts but had less stemness. Meanwhile, trajectory analysis further revealed that the evolution of TME influenced prognosis. We emphasized specific pathways or targets with the potential for combination immunotherapy by consensus network and single-cell RNA analyses. Anti-androgen therapy has been validated in vitro experiments of LUSC as proof of concept. In conclusion, LSQ1 was linked to immune exclusion and might be utilized for vaccination, while LSQ2 was linked to immune dysfunction and could be used for programmed cell death protein 1 (PD1) blocking therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app