Add like
Add dislike
Add to saved papers

A Macrophage Cell Membrane-Coated Cascade-Targeting Photothermal Nanosystem for Combating Intracellular Bacterial Infections.

Acta Biomaterialia 2023 December 29
Current antibacterial interventions encounter formidable challenges when confronting intracellular bacteria, attributable to their clustering within phagocytes, particularly macrophages, evading host immunity and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem, denoted as MM@DAu NPs, which seamlessly integrates cascade-targeting capabilities with controllable antibacterial functions for the precise elimination of intracellular bacteria. MM@DAu NPs feature a core comprising D-alanine-functionalized gold nanoparticles (DAu NPs) enveloped by a macrophage cell membrane (MM) coating. Upon administration, MM@DAu NPs harness the intrinsic homologous targeting ability of their macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization within these host cells, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, D-alanine present on DAu NPs. This intricate process establishes a cascade mechanism that efficiently targets intracellular bacteria. Upon exposure to near-infrared irradiation, the accumulated DAu NPs surrounding intracellular bacteria induce local hyperthermia, enabling precise clearance of intracellular bacteria. Further validation in animal models infected with the typical intracellular bacteria, Staphylococcus aureus, substantiates the exceptional cascade-targeting efficacy and photothermal antibacterial potential of MM@DAu NPs in vivo. Therefore, this integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising approach for conquering persistent intracellular infections without drug resistance risks. STATEMENT OF SIGNIFICANCE: : Intracellular bacterial infections lead to treatment failures and relapses because intracellular bacteria could cluster within phagocytes, especially macrophages, evading the host immune system and resisting antibiotics. Herein, we have developed an intelligent cell membrane-based nanosystem MM@DAu NPs, which is designed to precisely eliminate intracellular bacteria through a controllable cascade-targeting photothermal antibacterial approach. MM@DAu NPs combine D-alanine-functionalized gold nanoparticles with a macrophage cell membrane coating. Upon administration, MM@DAu NPs harness the homologous targeting ability of macrophage membrane to infiltrate bacteria-infected macrophages. Upon internalization, exposed DAu NPs from MM@DAu NPs selectively bind to intracellular bacteria through the bacteria-targeting agent, enabling precise clearance of intracellular bacteria through local hyperthermia. This integrated cell membrane-based cascade-targeting photothermal nanosystem offers a promising avenue for conquering persistent intracellular infections without drug resistance risks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app