Add like
Add dislike
Add to saved papers

Solubility of Some Drugs in Aqueous Solutions of Choline Chloride-Based Deep Eutectic Solvent Systems: Experimental Data, Modeling, and the Impact of Solution pH.

BACKGROUND: The solubility of drugs in water and organic solvents is a crucial factor in numerous pharmaceutical processes. In recent years, a new type of solvent called deep eutectic solvents (DESs) has been developed as a useful solvent for drugs. Choline chloride-glycerol/urea (ChCl-G/U) systems are DESs recognized as a novel category of environmentally friendly solvents. One recent application of this type of DES in water is the solubilization of drugs.

OBJECTIVES: This study aimed to investigate the solubility of certain drugs in ChCl-G/U. In addition, the solubilization mechanisms of the DESs studied, and quantitative structure-property relationship (QSPR) models for solubilization were proposed.

METHODS: The solubility of 13 drugs in an aqueous solution of the ChCl-G/U system was investigated using the shake flask method. The study was conducted at 10% and 50% mass fractions of the studied systems. Multiple linear regression models were used to develop mathematical relationships between the solubilization of the studied compounds in the presence of ChCl-G/U + water mixture using QSPR models.

RESULTS: The solubility of the compounds showed a significant increase upon adding ChCl-G/U to the aqueous solutions. Based on the data obtained, QSPR models were developed using solubilization ratio and structural descriptors.

CONCLUSIONS: The experimental data demonstrates the potential of utilizing ChCl-G/U as a medium to enhance the solubility of poorly soluble drugs in water. Solubilization of solutes in ChCl-G/U + water mixtures could be correlated with the structural properties of drugs. Moreover, the final pH of the solutions in ChCl-U is a critical factor that must be considered when using this system for solubilization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app