Add like
Add dislike
Add to saved papers

Driving model of land use change on the evolution of carbon stock: a case study of Chongqing, China.

Terrestrialecosystems are significant carbon sinks and are crucial for understanding the regional and global carbon cycles, energy flow, and climate change. As land use change is a significant process affecting ecosystem carbon stocks and striving for land degradation neutrality (LDN), studying it is essential for comprehending the evolution of regional carbon sink functions and achieving sustainable development goals. The drastically diverse land use patterns in each of the study area's regions resulted in significant differences in carbon stock. This study explores the evolution traits of carbon stocks based on land use data and their driving mechanisms in Chongqing during the past 30 years by using spatial analysis, the InVEST model, and geographic probes. The results demonstrate that from 1990 to 2020, land degradation in Chongqing was made worse by the demand for land for construction land, but the strategy of converting cropland back to forests raised the carbon stock of forest land. The overall result is a decrease in total carbon stocks of 5.1078 Tg or 1.5%. The main pathway for carbon loss pathway in the evolution of carbon stock is the conversion of cropland to construction land, and the primary carbon compensation pathway is the conversion of grassland and cropland to forest land, with a spatial distribution characterized by "higher in the whole area and obvious local differences." The land use intensity index has the most significant influence on the evolution of carbon stock. Moreover, the interaction of pairwise factors played a more important role in affecting the evolution of carbon stocks than did each factor individually. The case study in this paper shows that land use change is a significant driving mechanism for the evolution of carbon stock, and the development of a driving model theory is appropriate for deciphering the trajectory of carbon stock evolution and offering research suggestions for other regions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app