Add like
Add dislike
Add to saved papers

Calcium influx promotes PLEKHG4B localization to cell-cell junctions and regulates the integrity of junctional actin filaments.

PLEKHG4B is a Cdc42-targeting guanine-nucleotide exchange factor implicated in forming epithelial cell-cell junctions. Here we explored the mechanism regulating PLEKHG4B localization. PLEKHG4B localized to the basal membrane in normal Ca2+ medium but accumulated at cell-cell junctions upon ionomycin treatment. Ionomycin-induced junctional localization of PLEKHG4B was suppressed upon disrupting its annexin-A2 (ANXA2)-binding ability. Thus, Ca2+ influx and ANXA2 binding are crucial for PLEKHG4B localization to cell-cell junctions. Treatments with low Ca2+ or BAPTA-AM (an intracellular Ca2+ chelator) suppressed PLEKHG4B localization to the basal membrane. Mutations of the phosphoinositide-binding motif in the pleckstrin homology (PH) domain of PLEKHG4B or masking of membrane phosphatidylinositol-4,5-biphosphate [PI(4,5)P2 ] suppressed PLEKHG4B localization to the basal membrane, indicating that basal membrane localization of PLEKHG4B requires suitable intracellular Ca2+ levels and PI(4,5)P2 binding of the PH domain. Activation of mechanosensitive ion channels (MSCs) promoted PLEKHG4B localization to cell-cell junctions, and their inhibition suppressed it. Moreover, similar to the PLEKHG4B knockdown phenotypes, inhibition of MSCs or treatment with BAPTA-AM disturbed the integrity of actin filaments at cell-cell junctions. Taken together, our results suggest that Ca2+ influx plays crucial roles in PLEKHG4B localization to cell-cell junctions and the integrity of junctional actin organization, with MSCs contributing to this process. [Media: see text] [Media: see text].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app