Journal Article
Review
Add like
Add dislike
Add to saved papers

Visualization of ferroptosis in brain diseases and ferroptosis-inducing nanomedicine for glioma.

A remarkable body of new data establishes that many degenerative brain diseases and some acute injury situations in the brain may be associated with ferroptosis. In recent years, ferroptosis has also attracted great interest in the cancer research community, partly because it is a unique mode of cell death distinct from other forms and thus has great therapeutic potential for brain cancer. Glioblastoma is a highly aggressive and fatal human cancer, accounting for 60% of all primary brain tumors. Despite the development of various pharmacological and surgical modalities, the survival rates of high-grade gliomas have remained poor over the past few decades. Recent evidence has revealed that ferroptosis is involved in tumor initiation, progression, and metastasis, and manipulating ferroptosis could offer a novel strategy for glioma management. Nanoparticles have been exploited as multifunctional platforms that can cross the blood-brain barrier and deliver therapeutic agents to the brain to address the pressing need for accurate visualization of ferroptosis and glioma treatment. To create efficient and durable ferroptosis inducers, many researchers have engineered nanocomposites to induce a more effective ferroptosis for therapy. In this review, we present the mechanism of ferroptosis and outline the current strategies of imaging and nanotherapy of ferroptosis in brain diseases, especially glioma. We aim to provide up-to-date information on ferroptosis and emphasize the potential clinical implications of ferroptosis for glioma diagnosis and treatment. However, regulation of ferroptosis in vivo remains challenging due to a lack of compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app