Add like
Add dislike
Add to saved papers

Inferring Microscopic Financial Information from the Long Memory in Market-Order Flow: A Quantitative Test of the Lillo-Mike-Farmer Model.

Physical Review Letters 2023 November 11
In financial markets, the market-order sign exhibits strong persistence, widely known as the long-range correlation (LRC) of order flow; specifically, the sign autocorrelation function (ACF) displays long memory with power-law exponent γ, such that C(τ)∝τ^{-γ} for large time-lag τ. One of the most promising microscopic hypotheses is the order-splitting behavior at the level of individual traders. Indeed, Lillo, Mike, and Farmer (LMF) introduced in 2005 a simple microscopic model of order-splitting behavior, which predicts that the macroscopic sign correlation is quantitatively associated with the microscopic distribution of metaorders. While this hypothesis has been a central issue of debate in econophysics, its direct quantitative validation has been missing because it requires large microscopic datasets with high resolution to observe the order-splitting behavior of all individual traders. Here we present the first quantitative validation of this LMF prediction by analyzing a large microscopic dataset in the Tokyo Stock Exchange market for more than nine years. On classifying all traders as either order-splitting traders or random traders as a statistical clustering, we directly measured the metaorder-length distributions P(L)∝L^{-α-1} as the microscopic parameter of the LMF model and examined the theoretical prediction on the macroscopic order correlation γ≈α-1. We discover that the LMF prediction agrees with the actual data even at the quantitative level. We also discuss the estimation of the total number of the order-splitting traders from the ACF prefactor, showing that microscopic financial information can be inferred from the LRC in the ACF. Our Letter provides the first solid support of the microscopic model and solves directly a long-standing problem in the field of econophysics and market microstructure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app