Add like
Add dislike
Add to saved papers

miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway.

Cancer Biology & Therapy 2023 December 32
Glioblastoma as the most common and aggressive central nervous system tumor in adults. Its prognosis and therapeutic outcome are poor due to the limited understanding of its molecular mechanism. Apolipoprotein C-1 (APOC1) as a member of the apolipoprotein family that acts as a tumor promoter in various cancers. MicroRNA (miRNA) can silence gene expression and suppress tumor progression. However, the role of APOC1 and its upstream miRNA has not been explored in glioblastoma. Two glioblastoma cell lines (U87 and U251) were used to explore the role of APOC1 and its upstream miRNA-660-3p in glioblastoma tumorigenesis in vitro . Cells with APOC1/miRNA-660-3p overexpression or knockdown were assessed for their proliferation, migration, and invasion in vitro , and tumorigenesis in vivo . Gene and protein expression was assessed by qRT-PCR and western blot, respectively. Cell proliferation was assessed by the MTT assay and the EdU and Ki67 staining. Cell migration and invasion were assessed by the transwell assay. Tumorigenesis in vivo was assessed in U87 cells with a xenograft mouse model. APOC1 was overexpressed in glioblastoma compared with normal peritumoral tissue and was inversely related to patient prognosis. APOC1 overexpression promotes cell proliferation, migration, and invasion in vitro . APOC1 inhibition reduced tumor growth in vivo . miRNA-660-3p inhibits tumorigenesis by directly targeting APOC1. Mechanistically, APOC1 drives the malignancy of glioblastoma by activating the TGFβ2 signaling pathway. miRNA-660-3p suppresses tumorigenesis by targeting APOC1. Therefore, miRNA-660-3p/APOC1 axis can serve as potential intervention targets in managing glioblastoma progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app