Add like
Add dislike
Add to saved papers

Invasion-Block and S-MARVEL: A high-content screening and image analysis platform identifies ATM kinase as a modulator of melanoma invasion and metastasis.

Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app