Add like
Add dislike
Add to saved papers

Long term exercise-derived exosomal LncRNA CRNDE mitigates myocardial infarction injury through miR-489-3p/Nrf2 signaling axis.

Myocardial infarction (MI) is a cardiovascular disease and troubles patients all over the world. Exosomes produced after long-term exercise training were discovered to mediate intercellular communication and alleviate MI-induced heart injury. However, the detailed roles of long-term exercise-derived exosomal long noncoding RNAs (LncRNAs) in MI remain uncovered. In this study, we collected and identified long-term exercise-derived exosomes, and established MI or hypoxia/reoxygenation (H/R) model after LncRNA colorectal neoplasia differentially expressed (CRNDE) depletion. This work proved that LncRNA CRNDE was highly expressed in long-term exercise-derived exosomes (p = 0.0078). CRNDE knockdown increased cardiomyocytes apoptosis and oxidative stress (p = 0.0036), and suppressed MI progress (p = 0.0005). CRNDE served as the sponge of miR-489-3p to affect Nrf2 expression (p = 0.0001). MiR-489-3p inhibition effectively reversed the effects of CRNDE depletion on hypoxia cardiomyocytes (p = 0.0002). These findings offered a promising therapeutic option for the treatment of MI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app