Add like
Add dislike
Add to saved papers

Glucose fluctuations aggravated the late sodium current induced ventricular arrhythmias via the activation of ROS/CaMKII pathway.

BACKGROUND: Recent evidence revealed that glucose fluctuation might be more likely to cause arrhythmia than persistent hyperglycemia, whereas its mechanisms were elusive. We aimed to investigate the effect of glucose fluctuation on the occurrence of ventricular arrhythmia and its mechanism.

METHODS: Streptozotocin (STZ) induced diabetic rats were randomized to five groups: the controlled blood glucose (C-STZ) group, uncontrolled blood glucose (U-STZ) group, fluctuated blood glucose (GF-STZ) group, and GF-STZ rats with 100 mg/kg Tempol (GF-STZ + Tempol) group or with 5 mg/kg KN93 (GF-STZ + KN93) group. Six weeks later, the susceptibility of ventricular arrhythmias and the electrophysiological dysfunctions of ventricular myocytes were evaluated using electrocardiogram and patch-clamp technique, respectively. The levels of reactive oxygen species (ROS) and oxidized CaMKII (ox-CaMKII) were determined by fluorescence assay and Western blot, respectively. Neonatal rat cardiomyocytes and H9C2 cells in vitro were used to explore the underlying mechanisms.

RESULTS: The induction rate of ventricular arrhythmias was 10%, 55%, and 90% in C-STZ group, U-STZ group, and GF-STZ group, respectively (P < 0.05). The electrophysiological dysfunctions of ventricular myocytes, including action potential duration at repolarization of 90% (APD90 ), APD90 short-term variability (APD90 -STV), late sodium current (INa-L ), early after depolarization (EAD) and delayed after depolarizations (DAD), as well as the levels of ROS and ox-CaMKII, were significantly increased in GF-STZ group. In vivo and ex vivo, inhibition of ROS or ox-CaMKII reversed these effects. Inhibition of INa-L also significantly alleviated the electrophysiological dysfunctions. In vitro, inhibition of ROS increase could significantly decrease the ox-CaMKII activation induced by glucose fluctuations.

CONCLUSIONS: Glucose fluctuations aggravated the INa-L induced ventricular arrhythmias though the activation of ROS/CaMKII pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app