Add like
Add dislike
Add to saved papers

Enhancing cholangiocarcinoma immunotherapy with adoptive T cells targeting HLA-restricted neoantigen peptides derived from driver gene mutations.

Precision immunotherapy, driven by genomic and bioinformatic advancements, has emerged as a promising and viable approach to combat cancer. Targeting neoantigens offers the advantage of specific immune responses with minimal off-tumor toxicity. In this study, we investigated the potential of adoptive T cells activated by HLA-restricted neoantigen peptides from driver gene mutations for treating cholangiocarcinoma (CCA), a highly aggressive cancer with poor prognosis and high mortality rates. Through whole exome sequencing of CCA cell lines, KKU-213A and KKU-100, we identified mutations in common driver genes and predicted corresponding HLA-restricted peptides. Peptides from KRAS, RNF43, and TP53 mutations exhibited strong binding affinity to HLA-A11, as validated through molecular docking and T2-cell binding assays. Dendritic cells (DCs) from healthy donors expressing HLA-A* 11:01, pulsed with individual or pooled peptides, showed comparable levels of costimulatory molecules (CD11c, CD40, CD86, and HLA-DR) to conventional DCs but higher expression of maturation markers, CD80 and CD86. Autologous HLA-A* 11:01-restricted T cells, activated by peptide-pulsed DCs, effectively lysed KKU-213A (HLA-A*11:01) cells, outperforming conventional tumor lysate-pulsed DCs. This effect was specific to HLA-A* 11:01-restricted T cells and not observed in KKU-100 (HLA-A*33:03) cells. Moreover, HLA-A* 11:01-restricted T cells exhibited elevated levels of IFN-gamma, granulysin, and granzyme B, indicating their potent anti-tumor capabilities. These findings underscore the specificity and efficiency of HLA-A* 11:01-restricted T cells targeting KRAS, RNF43, TP53 mutated CCA cells, and offer valuable insights for developing immunotherapeutic strategies and therapeutic peptide-vaccines for CCA treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app