Add like
Add dislike
Add to saved papers

Extracellular vesicles encapsulated with caspase-1 inhibitor ameliorate experimental autoimmune myasthenia gravis through targeting macrophages.

Cysteinyl aspartate-specific proteinase-1 (caspase-1) is a multifunctional inflammatory mediator in many inflammation-related diseases. Previous studies show that caspase-1 inhibitors produce effective therapeutic outcomes in a rat model of myasthenia gravis. However, tissue toxicity and unwanted off-target effects are the major disadvantages limiting their clinical application as therapeutic agents. This study shows that dendritic cell-derived extracellular vesicles (EVs) loaded with a caspase-1 inhibitor (EVs-VX-765) are phagocytized mainly by macrophages, and caspase-1 is precisely expressed in macrophages. Furthermore, EVs-VX-765 demonstrates excellent therapeutic effects through a macrophage-dependent mechanism, and it notably inhibits the level of interleukin-1β and subsequently inhibits Th17 response and germinal center (GC) reactions. In addition, EVs-VX-765 demonstrates better therapeutic effects than routine doses of VX-765, although drug loading is much lower than routine doses, consequently reducing tissue toxicity. In conclusion, this study's findings suggest that EV-mediated delivery of caspase-1 inhibitors is effective for treating myasthenia gravis and is promising for clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app