Add like
Add dislike
Add to saved papers

Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody İnteraction Finite Element Analysis, and Experimental.

BACKGROUND: Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.

METHODS: In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.

RESULTS: It has been found that the simulation results are supported by analytical calculations and experimental results.

CONCLUSION: The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app