Add like
Add dislike
Add to saved papers

In silico identification of deep-sea fungal alkaloids as potential inhibitors of SARS-CoV-2, Delta and Omicron spikes.

Future Virology 2023 October
Aim: Virtual screening of deep-sea fungal metabolites against SARS-CoV-2 Delta and Omicron spikes as potential antivirals. Materials & methods: Deep-sea fungal alkaloids (n ≥ 150) were evaluated against SARS-CoV-2, Delta and Omicron spikes, using various in silico approaches, including Admet scores, physiochemical properties, molecular docking (MD) and MD simulation (150 ns). Results: The test alkaloids complied with Admet scores and physiochemical properties within acceptable ranges, and followed Lipinski's rule of five. Of these, Cladosporium sphaerospermum -derived cladosin K (tetramate alkaloid) for SARS-CoV-2, Cystobasidium laryngis -derived saphenol (phenazine alkaloid) for Delta and Chaetomium globosum -derived chaetoglobosin E (quinoline alkaloid) for Omicron were identified as potential spike-inhibitors. Conclusion: Our data therefore, strongly warrants further experimental validations of cladosin K, saphenol and chaetoglobosin E, especially against the Omicron and Delta spikes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app