Add like
Add dislike
Add to saved papers

Role of dendritic cell‑derived exosomes in allergic rhinitis (Review).

Allergic rhinitis (AR) is a common pathological condition in otorhinolaryngology. Its prevalence has been increasing worldwide and is becoming a major burden to the world population. Dendritic cells (DCs) are typically activated and matured after capturing, phagocytosing, and processing allergens during the immunopathogenesis of AR. In addition, the process of DC activation and maturation is accompanied by the production of exosomes, which are cell‑derived extracellular vesicles (EVs) that can carry proteins, lipids, nucleic acids, and other cargoes involved in intercellular communication and material transfer. In particular, DC‑derived exosomes (Dex) can participate in allergic immune responses, where the biological substances carried by them can have potentially important implications for both the pathogenesis and treatment of AR. Dex can also be exploited to carry anti‑allergy agents to effectively treat AR. This provides a novel method to explore the pathogenesis of and treatment strategies for AR further. Therefore, the present review focuses on the origin, composition, function, and biological characteristics of DCs, exosomes, and Dex, in addition to the possible relationship between Dex and AR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app