Add like
Add dislike
Add to saved papers

Neurochemical Research of LOXBlock-1 and ZnSO 4 against Neurodegenerative Damage Induced by Amyloid Beta(1-42).

Synaptosomes offer an intriguing ex vivo model system for investigating the molecular mechanisms of neurodegenerative processes. Lipoxygenases significantly affect the course of neurodegenerative diseases. Homeostasis of trace elements such as zinc is necessary for the continuity of brain functions. In this study, we purpose to determine whether LOXBlock-1, a 12/15 lipoxygenase inhibitor, and zinc sulfate (ZnSO4 ) provide any biochemical protection during neurodegenerative damage in synaptosomes induced by amyloid beta 1-42 (Aβ1-42). In this study, animals (30 Wistar Albino male rats 30) were divided into 5 groups (6 animals in each group): Control, 10µM Aβ1-42, 10µM Aβ1-42+25mM LOXBlock-1, 10µM Aβ1-42+10µM ZnSO4 , and 10µM Aβ1-42+25mM LOXBlock-1+10µM ZnSO4 . Synaptosomes were isolated from the rat cerebral cortex. Following, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, malondialdehyde (MDA) levels, adenosine deaminase (ADA) levels, reduced-glutathione (GSH) levels, neuronal nitric oxide synthase (nNOS) levels, acetylcholinesterase (AChE) activity, catalase (CAT) activity, and 8-OHdG levels in synaptosomes were detected according to the ELISA method. ADA and AChE expression and protein levels were analyzed. MDA, nNOS, AChE, and 8-OHdG levels in synaptosomes treated with Aβ1-42 resulted in an increase, while there was a decrease in ADA, GSH, and CAT levels (p<0.001 vs. control). Conversely, LOXBlock-1 and ZnSO4 treatments in synaptosomes treated with Aβ1-42 decreased MDA, nNOS, AChE, and 8-OHdG levels, while ADA, GSH, and CAT levels increased. Moreover, the most effective improvement was seen in the co-treatment group of LOXBlock-1 and ZnSO4 . Our data showed that LOXBlock-1 and ZnSO4 co-treatment may protect against Aβ1-42 exposure in rat brain synaptosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app