Add like
Add dislike
Add to saved papers

CCDC127 regulates lipid droplet homeostasis by enhancing mitochondria-ER contacts.

Lipid droplets (LDs) are both energy storage and signaling organelles playing important roles in various physiological and pathological conditions. The mitochondria-ER contacts have been implicated in regulating the homeostasis of lipid droplets. However, our knowledge about the molecular mechanism behind this regulation is still limited. In this study, we identified CCDC127, a previously uncharacterized protein, as a new regulator of LDs by enhancing the mitochondria-ER contact sites (MERCS). Knockdown and overexpression of CCDC127 in HeLa cells significantly change the LDs abundance in opposite directions, suggesting that CCDC127 positively regulates the LDs. Additional analysis showed that CCDC127 localizes on the outer membrane of mitochondria through its N-terminus and promotes mitochondria fragmentation. Importantly, knockdown or overexpression of CCDC127 significantly down- or up-regulates, respectively, the formation of MERCS. Further experiments showed that CCDC127 is required to stabilize the MERCS tether protein VAPA. And overexpression or knockdown of VAPA reversed the effects of CCDC127 reduction or overexpression on LDs. Finally, we demonstrated that knocking down CCDC127 in the mesenchymal stem cells reduced their differentiation towards adipocytes. These findings provide a new molecular connection between LD homeostasis and MERCS regulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app