Add like
Add dislike
Add to saved papers

Chemosensitivity to doxorubicin in primary cells derived from tumor of FVB/N-Trp53 tm1Hw1 with TALEN-mediated Trp53 mutant gene.

BACKGROUND: To evaluate the chemosensitivity to doxorubicin (DOX) in two primary cells derived from a tumor of FVB/N-Trp53tm1Hw1 knockout (KO) mice with TALEN-mediated Trp53 mutant gene, we evaluated the cell survivability, cell cycle distribution, apoptotic cell numbers and apoptotic protein expression in solid tumor cells and ascetic tumor cells treated with DOX.

RESULTS: The primary tumor cells showed a significant (P < 0.05) defect for UV-induced upregulation of the Trp53 protein, and consisted of different ratios of leukocytes, fibroblasts, epithelial cells and mesenchymal cells. The IC50 level to DOX was lower in both primary cells (IC50  = 0.12 μM and 0.20 μM) as compared to the CT26 cells (IC50  = 0.32 μM), although the solid tumor was more sensitive. Also, the number of cells arrested at the G0/G1 stage was significantly decreased (24.7-23.1% in primary tumor cells treated with DOX, P < 0.05) while arrest at the G2 stage was enhanced to 296.8-254.3% in DOX-treated primary tumor cells compared with DOX-treated CT26 cells. Furthermore, apoptotic cells of early and late stage were greatly increased in the two primary cell-lines treated with DOX when compared to same conditions for CT26 cells. However, the Bax/Bcl-2 expression level was maintained constant in the primary tumor and CT26 cells.

CONCLUSIONS: To the best of our knowledge, these results are the first to successfully detect an alteration in chemosensitivity to DOX in solid tumor cells and ascetic tumor cells derived from tumor of FVB/N-Trp53tm1Hw1 mice TALEN-mediated Trp53 mutant gene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app