Add like
Add dislike
Add to saved papers

High-Salt Diet Causes Defective Oocyte Maturation and Embryonic Development to Impair Female Fertility in Mice.

SCOPE: High salinity has been reported to induce many human disorders in tissues and organs to interfere with their normal physiological functions. However, it is unknown how salinity affects the development of female germ cells. This study suggests that a high-salt diet (HSD) may weaken oocyte quality to impair female fertility in mice and investigates the underlying mechanisms.

METHODS AND RESULTS: C57BL/6 female mice are fed with a regular diet (Control) or a high-salt diet (HSD). Oocyte maturation, fertilization rate, embryonic development, and female fertility are evaluated. In addition, the spindle organization, actin polymerization, and kinetochore-microtubule attachment of oocytes are examined in both groups. Moreover, single-cell transcriptome data are used to demonstrate how HSD alters the transcript levels of genes. The observations confirm that HSD leads to female subfertility due to the deterioration of oocyte and embryo quality. The mechanism underlying reveals HSD compromises the oocytes' autophagy, apoptosis level, and mitochondrial function.

CONCLUSION: The work illustrates that a high concentration of salt diet results in oocyte meiotic arrest, fertilization failure, and early developmental defection that embryos undergo to reduce female fertility in mice by perturbing the level of autophagy and apoptosis, mitochondrial function in oocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app