Add like
Add dislike
Add to saved papers

The value of shear wave elasticity and shear wave dispersion imaging to evaluate the viscoelasticity of renal parenchyma in children with glomerular diseases.

BMC Nephrology 2023 October 20
BACKGROUND: To study the value of shear wave elasticity and shear wave dispersion imaging to evaluate the viscoelasticity of renal parenchyma in children with glomerular diseases.

METHODS: Forty-three children with glomerular diseases were prospectively evaluated by shear wave elasticity (SWE) and shear wave dispersion imaging (SWD); 43 healthy volunteers served as the control group. The shear wave velocities (SWV) and the dispersion slopes were measured at the upper, middle, and lower poles of both kidneys. The analysis of mean SWV and mean dispersion slope in control and patient groups was used to further evaluate the value of SWE and SWD in the viscoelasticity of renal parenchyma in children with glomerular disease.

RESULTS: The mean SWV in children with glomerular disease was higher than that in the healthy control group (1.61 ± 0.09 m/s vs. 1.43 ± 0.07 m/s, p < 0.001). Compared with healthy group, the mean dispersion slope in children with glomerular disease was significantly increased (13.5 ± 1.39 (m/s)/kHz vs. 12.4 ± 1.40 (m/s)/kHz, p < 0.001). Correlation analysis showed absence of correlation between the SWV and dispersion slope of occult blood, serum creatinine, 24-h urine protein, blood albumin, BMI and ROI box depth of children with glomerular disease.

CONCLUSIONS: The present study shows that it is feasible to use SWE and SWD to evaluate the difference of viscoelasticity of the renal parenchyma between healthy children and those with glomerular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app