Add like
Add dislike
Add to saved papers

Computational fluid dynamics study in children with obstructive sleep apnea.

OBJECTIVES: This study aims to identify characteristics in image-based computational fluid dynamics (CFD) in children with obstructive sleep apnea (OSA).

DESIGN: Diagnostic study.

SETTING: Hospital-based cohort.

PARTICIPANTS: Children with symptoms suggestive of OSA were recruited and underwent polysomnography.

MAIN OUTCOME MEASURES: Three-dimensional models of computational fluid dynamics were derived from cone-beam computed tomography.

RESULTS: A total of 68 children participated in the study (44 boys; mean age: 7.8 years), including 34 participants having moderate-to-severe OSA (apnea-hypopnea index [AHI] greater than 5 events/h), and 34 age, gender, and body mass index percentile matched participants having primary snoring (AHI less than 1). Children with moderate-to-severe OSA had a significantly higher total airway pressure (166.3 vs. 39.1 Pa, p = .009), total airway resistance (9851 vs. 2060 Newton-metre, p = .004) and velocity at a minimal cross-sectional area (65.7 vs. 8.8 metre per second, p = .017) than those with primary snoring. The optimal cut-off points for moderate-to-severe OSA were 46.2 Pa in the total airway pressure (area under the curve [AUC] = 73.2%), 2373 Newton-metre in the total airway resistance (AUC = 72.5%) and 12.6 metres per second in the velocity at a minimal cross-sectional area (AUC = 70.5%). The conditional logistic regression model revealed that total airway pressure, total airway resistance and velocity at minimal cross-sectional area were significantly associated with an increased risk of moderate-to-severe OSA.

CONCLUSIONS: This study demonstrates that CFD could be a useful tool for evaluating upper airway patency in children with OSA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app