Add like
Add dislike
Add to saved papers

The E2F1/MELTF axis fosters the progression of lung adenocarcinoma by regulating the Notch signaling pathway.

Mutation Research 2023 September 29
BACKGROUND: Lung adenocarcinoma (LUAD) represents the predominant subtype of lung cancer. MELTF, an oncogene, exhibits high expression in various cancer tissues. Nevertheless, the precise role of MELTF in the progression of LUAD remains enigmatic. This work was devised to investigate the effect of MELTF on LUAD progression and its underlying mechanism.

METHODS: mRNA expression data of LUAD were from The Cancer Genome Atlas database, and the enrichment pathway of MELTF was analyzed. The upstream transcription factors of MELTF were predicted, and the correlation between MELTF and E2F1 as well as the expression of the two in LUAD tissues were dissected by bioinformatics. The expression of MELTF and E2F1 in LUAD tissues and cells was assayed by qRT-PCR. Effects of MELTF/E2F1 on proliferation, migration, and invasion of LUAD cells were tested by CCK-8, colony formation, and Transwell assays. The binding relationship between E2F1 and MELTF was estimated by dual-luciferase reporter gene assay and ChIP assay. Western blot was utilized to assay the expression of Notch signaling pathway-related proteins in different treatment groups.

RESULTS: Bioinformatics analysis and qRT-PCR results exhibited high expression of E2F1 and MELTF in LUAD tissues and cells, respectively. Dual-luciferase reporter gene assay and ChIP assay ascertained the binding of E2F1 to MELTF. MELTF was ascertained to enrich the Notch signaling pathway by bioinformatics means. In cell experiments, MELTF was shown to foster the malignant progression of LUAD cells and promoted the expression of NOTCH1 and HES1 proteins, but RO4929097 offset the effect of MELTF on cells. Rescue assay confirmed that E2F1 activated MELTF to promote LUAD progression via the Notch signaling pathway.

CONCLUSION: Together, our outcomes demonstrated that E2F1 fostered LUAD progression by activating MELTF via the Notch signaling activity. Hence, MELTF emerged as a feasible target for treating LUAD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app