Add like
Add dislike
Add to saved papers

Effect of Yeast-Derived Peptides on Skeletal Muscle Function and Exercise-Induced Fatigue in C2C12 Myotube Cells and ICR Mice.

In our previous study, the antioxidant peptides (XHY69AP, AP-D, YPLP, and AGPL) were obtained from potential probiotic yeast ( Yamadazyma triangularis XHY69), which was selected by our lab from dry-cured ham. This work aimed to explore the effects of yeast-derived peptides on skeletal muscle function and muscle fatigue. Results showed that yeast-derived peptides up-regulated slow-twitch fiber expression and down-regulated fast-twitch fiber expression in C2C12 cells ( p < 0.05). The peptides improved mitochondrial membrane potential, adenosine triphosphate generation, and expression of cytochrome-relative genes, thus promoting mitochondrial function. Among these peptides, YPLP up-regulated the relative gene expression of the AMP-activated protein kinase (AMPK) pathway and activated AMPK by phosphorylation. Moreover, YPLP could prolong treadmill time, increase muscle and liver glycogen contents, reduce lactic acid and urea nitrogen contents, and alleviate muscle tissue injury in ICR exercise mice. These results demonstrate that yeast-derived peptides could change the muscle fiber composition, improve muscle function, and relieve muscle fatigue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app