Add like
Add dislike
Add to saved papers

Is there cardiac autonomic dysfunction in children and adolescents with exercise-induced bronchoconstriction?

BACKGROUND: The pulmonary impairment in patients with bronchoconstriction induced by eucapnic voluntary hyperpnea(EVH) goes beyond the respiratory system, also impairing autonomic nervous modulation. This study aimed to evaluate the behavior of cardiac autonomic modulation in young asthmatics with and without EIB after the EVH test.

RESEARCH DESIGN AND METHODS: A cross-sectional study design using 54 asthmatics(51.9% female), aged between 10 and 19 years, investigated with the EVH test. Forced expiratory volume in one second(FEV1 ) was measured at 5, 10, 15, and 30 min after EVH. Heart rate variability(HRV) measures of time were assessed pre and 30 min-post EVH. The diagnosis of Exercise-Induced bronchoconstriction with underlying clinical asthma(EIBA ) was confirmed by a fall in FEV1 ≥10% compared to baseline.

RESULTS: Thirty(55.5%) asthmatics had EIBA . Subjects with EIBA have reduced mean of the R-R intervals in relation to baseline until 15 minutes after EVH. Individuals without EIBA had increased parasympathetic activity compared to baseline(rMSSD) from 5 min after EVH( p  < 0.05). This parasympathetic activity increase in relation to baseline was seen in individuals with EIBA after 25 minutes (rMSSD = 49.9 ± 5.3 vs 63.5 ± 7.2, p  < 0.05).

CONCLUSION: Young asthmatics with EIBA present a delay in the increase of the parasympathetic component after EVH when compared to asthmatics without EIBA .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app