Journal Article
Review
Add like
Add dislike
Add to saved papers

Pharmacokinetic relevance of glomerular hyperfiltration for drug dosing.

In chronic kidney disease (CKD) patients, hypofiltration may lead to the accumulation of drugs that are cleared mainly by the kidney and, vice versa, hyperfiltration may cause augmented renal excretion of the same drugs. In this review we mainly focus on the issue of whether hyperfiltration significantly impacts the renal clearance of drugs and whether the same alteration may demand an up-titration of the doses applied in clinical practice. About half of severely ill, septic patients and patients with burns show glomerular hyperfiltration and this may lead to enhanced removal of drugs such as hydrophilic antibiotics and a higher risk of antibiotic treatment failure. In general, hyperfiltering obese individuals show higher absolute drug clearances than non-obese control subjects, but this depends on the body size descriptor adopted to adjust for fat excess. Several mechanisms influence pharmacokinetics in type 2 diabetes, including renal hyperfiltration, reduced tubular reabsorption and augmented tubular excretion. However, no consistent pharmacokinetic alteration has been identified in hyperfiltering obese subjects and type 2 diabetics. Non-vitamin K antagonist oral anticoagulants (NOACs) have exhibited lower plasma concentrations in hyperfiltering patients in some studies in patients with atrial fibrillation, but a recent systematic review failed to document any excess risk for stroke and systemic embolism in these patients. Hyperfiltration is common among severely ill patients in intensive care units and drug levels should be measured whenever possible in these high-risk patients to prevent underdosing and treatment failure. Hyperfiltration is also common in patients with obesity or type 2 diabetes, but no consistent pharmacokinetic alteration has been described in these patients. No NOAC dose adjustment is indicated in patients with atrial fibrillation being treated with these drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app