Add like
Add dislike
Add to saved papers

EggCountAI: a convolutional neural network-based software for counting of Aedes aegypti mosquito eggs.

Parasites & Vectors 2023 October 3
BACKGROUND: Mosquito-borne diseases exert a huge impact on both animal and human populations, posing substantial health risks. The behavioural and fitness traits of mosquitoes, such as locomotion and fecundity, are crucial factors that influence the spread of diseases. In existing egg-counting tools, each image requires separate processing with adjustments to various parameters such as intensity threshold and egg area size. Furthermore, accuracy decreases significantly when dealing with clustered or overlapping eggs. To overcome these issues, we have developed EggCountAI, a Mask Region-based Convolutional Neural Network (RCNN)-based free automatic egg-counting tool for Aedes aegypti mosquitoes.

METHODS: The study design involves developing EggCountAI for counting mosquito eggs and comparing its performance with two commonly employed tools-ICount and MECVision-using 10 microscopic and 10 macroscopic images of eggs laid by females on a paper strip. The results were validated through manual egg counting on the strips using ImageJ software. Two different models were trained on macroscopic and microscopic images to enhance egg detection accuracy, achieving mean average precision, mean average recall, and F1-scores of 0.92, 0.90, and 0.91 for the microscopic model, and 0.91, 0.90, and 0.90 for the macroscopic model, respectively. EggCountAI automatically counts eggs in a folder containing egg strip images, offering adaptable filtration for handling impurities of varying sizes.

RESULTS: The results obtained from EggCountAI highlight its remarkable performance, achieving overall accuracy of 98.88% for micro images and 96.06% for macro images. EggCountAI significantly outperformed ICount and MECVision, with ICount achieving 81.71% accuracy for micro images and 82.22% for macro images, while MECVision achieved 68.01% accuracy for micro images and 51.71% for macro images. EggCountAI also excelled in other statistical parameters, with mean absolute error of 1.90 eggs for micro, 74.30 eggs for macro, and a strong correlation and R-squared value (0.99) for both micro and macro. The superior performance of EggCountAI was most evident when handling overlapping or clustered eggs.

CONCLUSION: Accurate detection and counting of mosquito eggs enables the identification of preferred egg-laying sites and facilitates optimal placement of oviposition traps, enhancing targeted vector control efforts and disease transmission prevention. In future research, the tool holds the potential to extend its application to monitor mosquito feeding preferences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app