Journal Article
Review
Add like
Add dislike
Add to saved papers

Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury.

Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app