Add like
Add dislike
Add to saved papers

Stroke lesion size - Still a useful biomarker for stroke severity and outcome in times of high-dimensional models.

NeuroImage : Clinical 2023 September 19
BACKGROUND: The volumetric size of a brain lesion is a frequently used stroke biomarker. It stands out among most imaging biomarkers for being a one-dimensional variable that is applicable in simple statistical models. In times of machine learning algorithms, the question arises of whether such a simple variable is still useful, or whether high-dimensional models on spatial lesion information are superior.

METHODS: We included 753 first-ever anterior circulation ischemic stroke patients (age 68.4±15.2 years; NIHSS at 24 h 4.4±5.1; modified Rankin Scale (mRS) at 3-months median[IQR] 1[0.75;3]) and traced lesions on diffusion-weighted MRI. In an out-of-sample model validation scheme, we predicted stroke severity as measured by NIHSS 24 h and functional stroke outcome as measured by mRS at 3 months either from spatial lesion features or lesion size.

RESULTS: For stroke severity, the best regression model based on lesion size performed significantly above chance (p < 0.0001) with R2  = 0.322, but models with spatial lesion features performed significantly better with R2  = 0.363 (t(752) = 2.889; p = 0.004). For stroke outcome, the best classification model based on lesion size again performed significantly above chance (p < 0.0001) with an accuracy of 62.8%, which was not different from the best model with spatial lesion features (62.6%, p = 0.80). With smaller training data sets of only 150 or 50 patients, the performance of high-dimensional models with spatial lesion features decreased up to the point of being equivalent or even inferior to models trained on lesion size. The combination of lesion size and spatial lesion features in one model did not improve predictions.

CONCLUSIONS: Lesion size is a decent biomarker for stroke outcome and severity that is slightly inferior to spatial lesion features but is particularly suited in studies with small samples. When low-dimensional models are desired, lesion size provides a viable proxy biomarker for spatial lesion features, whereas high-precision prediction models in personalised prognostic medicine should operate with high-dimensional spatial imaging features in large samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app