Add like
Add dislike
Add to saved papers

Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect.

Developing substrates that combine sensitivity and signal stability is a major challenge in surface enhanced Raman scattering (SERS) research. Herein, we present a flexible triple-enhanced Raman Scattering MXene/Au nanocubes (AuNCs) sensor fabricated by selective filtration of Ti3 C2 Tx MXene/AuNCs hybrid on the Ti3 C2 Tx MXene membrane and subsequent treatment with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS). The resultant superhydrophobic MXene/AuNCs-FOTS membrane not only provides the SERS substrate with environmental stability, but also imparts analyte enrichment to enhance the sensitivity (LOD = 1 × 10-14  M) and reliability (RSD = 6.41%) for Rhodamine 6G (R6G) molecules owing to the attenuation of the coffee ring effect. Moreover, the triple enhancement mechanism of combining plasmonic coupling enhancement from plasmonic coupling (EM) of nearby AuNCs at lateral and longitudinal direction of MXene/AuNCs-FOTS membrane, charge transfer (CT) from Ti3 C2 Tx MXene and target molecules and analyte enrichment function provides the substrate with excellent SERS performance (EF = 3.19 × 109 ), and allows efficient quantification of biomarkers in urine. This work could provide new insights into MXenes as building blocks for high-performance substrates and fill existing gaps in SERS techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app