Add like
Add dislike
Add to saved papers

MPP2 interacts with SK2 to rescue the excitability of glutamatergic neurons in the BLA and facilitate the extinction of conditioned fear in mice.

AIMS: The basolateral amygdala (BLA) plays an integral role in anxiety disorders (such as post traumatic stress disorder) stem from dysregulated fear memory. The excitability of glutamatergic neurons in the BLA correlates with fear memory, and the afterhyperpolarization current (IAHP ) mediated by small-conductance calcium-activated potassium channel subtype 2 (SK2) dominates the excitability of glutamatergicneurons. This study aimed to explore the effect of MPP2 interacts with SK2 in the excitability of glutamatergic neurons in the BLA and the extinction of conditioned fear in mice.

METHODS: Fear memory was analyzed via freezing percentage. Western blotting and fluorescence quantitative PCR were used to determine the expression of protein and mRNA respectively. Electrophysiology was employed to measure the excitability of glutamatergic neurons and IAHP .

RESULTS: Fear conditioning decreased the levels of synaptic SK2 channels in the BLA, which were restored following fear extinction. Notably, reduced expression of synaptic SK2 channels in the BLA during fear conditioning was caused by the increased activity of protein kinase A (PKA), while increased levels of synaptic SK2 channels in the BLA during fear extinction were mediated by interactions with membrane-palmitoylated protein 2 (MPP2).

CONCLUSIONS: Our results revealed that MPP2 interacts with the SK2 channels and rescues the excitability of glutamatergic neurons by increasing the expression of synaptic SK2 channels in the BLA to promote the normalization of anxiety disorders and provide a new direction for the treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app