Add like
Add dislike
Add to saved papers

Integration of high visible-light-driven ternary dual Z-scheme AgVO 3 -InVO 4 /g-C 3 N 4 heterojunction nanocomposite for enhanced uranium(VI) photoreduction separation.

With deepening application of nuclear power technology, the problem of water ecological environment pollution caused by uranium (U(VI)) is becoming increasingly serious. Photoreduction separation of U(VI) on photocatalysts is considered as an effective strategy to solve uranium pollution. In this work, a novel ternary dual Z-scheme AgVO3 -InVO4 /g-C3 N4 heterojunction (Z-AIGH) nanocomposite with high surface area (73.45 m2  g-1 , Z-AIGH2) was designed. The batch adsorption experiment in dark environment showed that Z-AIGH2 nanocomposite had an excellent U(VI) adsorption performance. As for photocatalytic experiments, Z-AIGH2 exhibited a rapid photocatalytic response for separating U(VI) without any organic sacrifice agents. The U(VI) separation rate on Z-AIGH2 nanocomposite was over 98.7% after only 20.0 min visible light irradiation (T = 298 K, CU(Ⅵ)  = 10.0 mg L-1 , m/V = 0.1 g L-1 and pH = 7.0). Z-AIGH2 nanocomposite also showed good selectivity and cycle stability. The U(VI) removal rate of Z-AIGH2 nanocomposite after fifth cycles was about 96.1% (T = 298 K, CU(Ⅵ)  = 10.0 mg L-1 , m/V = 0.1 g L-1 and pH = 7.0). High photocatalytic activity of Z-AIGH2 for U(VI) was attributed to the construction of ternary dual Z-scheme heterojunction structure and ant nest-like hole structure. Based on above results, Z-AIGH2 nanocomposite had great potential for water environment renovation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app